Test-drive the GATK tools and Best Practices pipelines on Terra


Check out this blog post to learn how you can get started with GATK and try out the pipelines in preconfigured workspaces (with a user-friendly interface!) without having to install anything.

Filtering a variant on SOR that looks otherwise well supported

simono101simono101 London, UKMember
edited January 2015 in Ask the GATK team

Hi,
I need to apply hard filters to my data. In cases where I have lower coverage I plan to use the Fisher Strand annotation, and in higher coverage variant calls, SOR (using a JEXL expression to switch between them: DP < 20 ? FS > 50.0 : SOR > 3).

The variant call below (some annotations snipped), which is from a genotyped gVCF from HaplotypeCaller (using a BQSR'ed BAM file), looks well supported (high QD, high MQ, zero MQ0). However, there appears to be some strand bias (SOR=3.3):

788.77 . DP=34;FS=5.213;MQ=35.37;MQ0=0;QD=25.44;SOR=3.334 GT:AD:DP:GQ:PL 1/1:2,29:31:35:817,35,0

In this instance the filter example above would be applied.

My Question

Is this filtering out a true positive? And what kind of cut-offs should I be using for FS and SOR?

The snipped annotations ReadPosRankSum=-1.809 and BaseQRankSum=-0.8440 for this variant also indicate minor bias that the evidence to support this variant call also has some bias (the variant appears near the end of reads in low quality bases, compared to the reads supporting the reference allele).

My goal

This is part of a larger hard filter I'm applying to a set of genotyped gVCFs called from HaplotypeCaller.

I'm filtering HomRef positions using this JEXL filter:

vc.getGenotype("%sample%").isHomRef() ? ( vc.getGenotype("%sample%").getAD().size == 1 ? (DP < 10) : ( ((DP - MQ0) < 10) || ((MQ0 / (1.0 * DP)) >= 0.1) || MQRankSum > 3.2905 || ReadPosRankSum > 3.2905 || BaseQRankSum > 3.2905 ) ) : false

And filtering HomVar positions using this JEXL:

vc.getGenotype("%sample%").isHomVar() ? ( vc.getGenotype("%sample%").getAD().0 == 0 ? ( ((DP - MQ0) < 10) || ((MQ0 / (1.0 * DP)) >= 0.1) || QD < 5.0 || MQ < 30.0 ) : ( BaseQRankSum < -3.2905 || MQRankSum < -3.2905 || ReadPosRankSum < -3.2905 || (MQ0 / (1.0 * DP)) >= 0.1) || QD < 5.0 || (DP < 20 ? FS > 60.0 : SOR > 3.5) || MQ < 30.0 || QUAL < 100.0 ) ) : false

My goal is true positive variants only and I have high coverage data, so the filtering should be relatively stringent. Unfortunately I don't have a database I could use to apply VQSR, henceforth the comprehensive filtering strategy.

Post edited by simono101 on

Comments

Sign In or Register to comment.